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1. INTRODUCTION

In the original research proposal that is being reported on

here there were essentially four distinct, albeit related,

projects. This report, for ease of writing, reading, and

evaluation is built around these four projects in the following

fashion.

For each project I have included a brief recapitulation of

what was presented in the original proposal. (A reader who is

familiar with, and still remembers the details of, the original

proposal can bypass the recapitulation.) Following this is, in

each of the four cases, a report on the progress made towards

realizing the goals of the proposal. The reports are generally

rather brief, since they merely summarize results already

presented in research papers to which the reader can turn for more

details.

Following each report is a brief comment on further avenues

of research (if any) opened up by the work done to date.

At the end of the reports is a list of research papers that

resulted from the research described, as well as a list of

conferences attended and visits made to American universities

under the auspices and financing of the grant.

For the sake of completeness, we commence by including some

general background material on random fields.
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2. SOME BACKGROUND ON RANDOM FIELDS

Random fields are simply stochastic processes, X(t), whose

"time" parameter, t, varies over some rather general space rather

than over the more common real line. The simplest of these occur

when the parameter space is some multi-dimensional Euclidean

space, and it is these fields that will be at the centre of our

study. Of these, the most basic arise when the parameter space is

the two-dimensional plane, so that we are dealing with some kind

of random surface. When the parameter space is three-dimensional

then we have a field (such as ore concentration in a geological

site) that varies over space, while when the dimension increases

to four we are generally dealing with space-time problems.

More complicated examples of random fields arise as the

parameter space becomes more esoteric. Typical examples are

parameter spaces of classes of sets, such as arise in the

statistical theory of multi-variate Kolmogorov-Smirnov tests and

set-indexed empirical processes. Another common example is

provided by fields indexed by families of functions. While the

latter arise in the theory of empirical processes, they are much

more well known via their appearance in Quantum Field Theory in

Mathematical Physics. There they appear, among other guises, as

continuum limits of such well known discrete parameter random

fields as the Ising model of Statistical Mechanics.

For the moment, however, let us consider the simple setting

of continuous parameter random fields defined on a Euclidean

space. The theory of these fields is now quite substantial, with
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four separate monographs on various aspects of the subject having

appeared in the past four years. (Adler (1981a), Rozanov (1982),

Vanmarcke (1983) and Yadrenko (1983).) Roughly speaking, the

theory breaks quite naturally into two quite distinct parts.

In the first case, we assume that the sample functions

(realisations) of the random field satisfy certain basic

regularity conditions, such as continuity, differentiability,

etc.. It is then possible to study problems such as the structure

of the field in the neighbourhood of extrema, and the rate at

which the field "crosses" (a term which requires careful

definition) various levels. These problems turn out to be very

important in the application of random fields to the study of

rough surfaces, as discussed in the following section.

The second class of problems in the study of continuous

parameter random fields arises when the regularity conditions

mentioned above are not imposed. Conventionally, one then studies

such sample path properties as the (Hausdorff) dimension of

various random sets generated by the field. While these fields,

despite their somewhat esoteric properties, are both theoretically

interesting and of applied importance, (as the current theory of

fractal geometry due to Mandelbrot (1982) and his colleagues has

shown beyond any shadow of doubt), they are only of peripheral

concern to the main thrust of the current project.

Although, as just noted, the theory of continuous parameter

random fields is well developed, it is important to note that in

one respect at least it is still very restricted. This is a



b

consequence of the fact that throughout the literature, both

theoretical and applied, there is an almost universal assumption

of normality. This is an assumption that has a substantial

simplifying affect on the mathematics of random fields, but is

undesirable for two quite dist3nct reasons. The first, which comes

from purely practical considerations, is that real life fields to

which one might like to apply the theory are very often

non-Gaussian. For example, the rough metallic surfaces described

in the following section are known to be highly non-Gaussian

(Adler (1981b))% Assuming, incorrectly, that they are Gaussian

leads to the development of a theory of surface structure that

invariably fails to tie in with experiment. The second difficulty

with the Gaussian assumption is that it hamstrings the

Mathematician by limiting the phenomena available for his

investigation to that case only.

Of the four reports that follow, two are intimately concerned

with non-Gaussian processes. The first involves the development

and study of a model that can often be used in place of a baussian

one without too great an increase in the level of difficulty of

the mathematics. The fourth is related to the construction of

non-Gaussian (and Gaussian) generalised processes via the sample

paths of Markov processes. The remaining two reports are concerned

primarily with Gaussian, or closely related, processes.

Overall, the common thread that runs through the project is

the extension of both the theory and applications of random

fields, with the aim of increasing our understanding of the

Gaussian situation while at the same time attempting to extend our
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horizons beyond it.

3(a) ROUGH SURFACES AND CHI-SQUARED PROCESSES

It is now a well established fact that all surfaces used in

engineering practice are rough when judged by the standards of

molecular dimensions. This fact has played a major role in the

development of Tribology, a science that, among other problems, is

concerned with the nature of contact between two surfaces under

load and its relationship to problems such as wear, friction, and

the conduction of heat and electricity between two surfaces in

contact.

Because of the difficulties inherent in observing what

happens when two surfaces are in actual physical contact Tribology

has made substantial use of mathematical models. The basic idea

underlying this has been to develop models of surface structure

(at the microscopic level) and then apply these together with,

say, a theory of surface deformation, to predict observable

(macroscopic) phenomena. Although there has been an enormous

amount of activity in this area over the past twenty years (see

Thomas (1982) for a recent exhaustive survey) there is still very

often disconcerting disagreement between theory and practice. This

is despite the fact that very sophisticated random field models

have been used for the rough surfaces.

The reason for this is very simple. Almost without exception,



6

rough surfaces have been modeled as Gaussian fields, when, in

fact, they are highly non-Gaussian. This point was emphasised in

Adler and Firman (1981), following an analysis of both old and new

rough surface data. Consequently, irregardless of the

sophistication of the model, it is not surprising that the current

models fail to yield a theory that squares with practice.

It was precisely this problem that initiated the current

2
study of chi-squared ( 2) processes and fields. Chi-squared

processes can be easily defined by writing

n 2
X(t) =.n IEY(t))i=1 [Y1t~

where the Y_ are a sequence of independent Gaussian processes1

This simple trick yields a family of fields that are at the

same time substantially different to Gaussian fields in their

sample path behaviour and yet mathematically close enough to their

Gaussian parents to be analytically tractable. Furthermore, it

yields a family of fields that turn out to model rough surfaces

very closely, and to generate a theory that yields results akin to

those observed in the laboratory (c.f. Adler (1981b)).

It was from this background that it was decided, some three

2
to four years ago, that a systematic study of c2 processes and

fields be undertaken. This study was reasonably successful, and a

reasonably full picture of the behaviour of K processes and

fields is now available. This work has been written up in detail

in the three joint papers with Michael Aronowich listed in the
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bibliography, the last of these having been prepared during the

tenure of this year's grant. (Aronowich was a graduate student

supported by the Technion over the past four years to work on

projects related to random fields.)

Without going into detail here, let it suffice to say that we

2
now know as much about k processes and fields as is known about

Gaussian fields, at least insofar as their application to

modelling problems is concerned. (There certainly remain many

theorems of an abstract nature to be established, but our aims in

this particular piece of research have always been primarily

applied in nature.)

We plan in the future to commence a project of exploitation

of the results we now have in problems of surface science. This

turned out to be an essentially impossible task during 1985/86

while I was on sabbatical, and constantly moving around.

Hopefully, however, it is a task that will be started in earnest

now that I am back at the Technion with its environment of

engineering science and the sort of permanent facilities (data

files, familiar computing environment, etc.) that I did not have

last year.
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3(b) MAXIMA OF GAUSSIAN FIELDS

A simple sounding, but infamously difficult problem is the

following: Let X(t) be a stationary, Gaussian random process

defined on some interval on the real line. What is the

distribution of suptX(t)?

The answer to this is known for only five covariance

functions. A general theory, applicable to almost all Gaussian

processes on tte line, is available only if one is prepared to

settle for approximations to tail probabilites of the form

P( suptX(t) > A ) for large values of A. (For a full telling of

the theory of this, see Leadbetter, et. al. (1983).) The problem

becomes even more complicated when one moves to random fields, and

allows the parameter t to vary either over a subset of some

Euclidean space or over some even more complex space. There, very

little is known, even if one restricts attention to supposedly

simple fields, such as the so called Brownian sheet, the natural

generalisation to Rk, k>l, of the Brownian motion on the line.

Good, general, asymptotic bounds are, however, now known. For

example, for the pinned F-sheet, WF , of empirical process theory

it was shown in Adler and Brown (1986), essentially solving a

twenty year old problem of Kiefer's, that there exist constants

ck (F) and C k (independant of F) such that for all A

k A 2(k- 1 ) -2A 2  <2(k-1) -2A 2
cA e < (sup ]WF(t) >A ( CA ek - I

k ~t [0,1J

(Here WF is the Gaussian process on the k-dimensional unit cube

with zero mean and covariance function F(ts) - F(t).F(s) .)



It turns Out that trt e aCoo e , . . .

theory of empirical processes we shal. i .

section, can be extended as follows. f A t

Gaussian process, and T some general paramFte- se, - -

sets in the plane, or, more simply, just points i- s)--

the plane) then there is a function p(A) and costarts

(perhaps dependent on the process) Such that under Qite :; t e -

side conditions

A 2/2c2 -A i /C
c.p(A).e < P( sup X(t) > A } < C.p(A).e

t ET

2 2

Here 2 = sup(E[X (t)3, teT), and the form of p depends on t-,C

covariance function of X and the size (measured in terms of metri7

entropy) of the parameter set T. For example, for simple parameter

k
sets such as points in R p(A) is usually a polynomial of order

related to k. For larger, more complicated parameter sets, p may

turn out itself to be an exponential of the form exp(const.A ),

where of necessity a<l.

The establishment of the existence of such an extension was

one of the projects suggested in our proposal a year and a half

ago. At that stage we had a number of results (Adler and

Samorodnitsky (1985)) pertaining to primarily polynomial forms of

the function p(A) above. Since then, under the auspices of the

current grant and further supported by general Technion funds

Gennady Samorodnitsky has substantially sharpened our earlier

joint results for the polynomial case and furthermore extended

them to the case of exponential p. (c.f. Samorodnitsky l986a,b).
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It is my intention to continue with the study of the

distribution of Gaussian extrema in two related connections.

Firstly, despite the power of the results described above, when it

comes to wanting to know something very precise for a very

specific process, good results are still few and far between. Now,

however, we have a good set of tools available, and so it would

seem to be an opportune time to tackle the problem of precise

estimates for specific processes. This is primarily an analytical,

mathematical, problem, although computer simulation of extrema

distributions is useful in identifying how good (or bad) are

theoretically derived bounds.

The second problem is related to that of multivariate

empirical processes and multivariate Kolmogorov-Smirnov (KS)

statistics.
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3(c) EMPIRICAL PROCESSES AND MULTIVARIATE KOLMOGOROV-SMIRNOV

This theory arises in problems of testing whether a specific,

hypothesised, multivariate distribution is consistent with a

particular set of data, and of testing for independence between

sets of variables. A good recent review is given in Pyke (1984).

Unlike the one-dimensional situation, multivariate KS statistics

not only fail to be distribution free, but there is not even total

agreement as to how they should be formulated. For example, should

we consider the supremum of the difference between the empirical

and hypothesised distribution functions, as in one dimension, or

should we treat both of these as measures and consider the maximal

difference between these measures as they vary over some class of

sets (e.g. squares, disks, convex sets, etc.)?

Since for large sample sizes the empirical minus the

hypothesised distribution function converges to the random field

W F defined in the preceeding section, any KS statistic reduces to

studying the maximum of a Gaussian process. Thus, the methodology

discussed above has impact here. For example, it is a

straightforward calculation from the above described results of

Samorodnitsky and myself to detail the form of the tail of the

distribution of the KS statistics for large sample sizes.

Furthermore, this calculation is n3t really any harder in the case

of very complex parameter spaces, such as polygonal shapes or

convex sets in R2 as it is for the more classic, and simpler,

parameter spaces. Examples are given in our three papers.

Further work was done on this and related problems during the

year. In particular, while I was in Seattle Professor Ronald Pyke
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and I looked at the so-called "propagation of singularities"

problem for random fields generated from empirical processes, and

we have a number of preliminary results on this problem that we

are still working on.

3(d) GENERALIZED PROCESSES

Let me start by defining two functions. If X(u) is a Gaussian

1 k
process, taking 'values in R but with its parameter u in R, k>l,

then its covarlance function R(u,v) is defined by

R(u,v) = E{X(u).X(v)).

1 1
If W(t) is a Markov process defined on R+, but taking values in

kR , and with stationary transition density Pt(uv), then its

Green's function g(u,v) is defined by

g~u~v) -t
g(uv) = e Pt (u,v) dt.

0

It is a simple fact that every Green's function can serve as the

covariance function of some (usually generalised) Gaussian field,

and that the covariance functions of many Gaussian fields are also

the Green's functions of Markov processes. This obvious, indeed,

almost trite, fact has been known at least since the mid sixties,

but had not been properly exploited until Dynkin, in a series of

papers (1980 - 1984), used it to study Gaussian random fields from

the viewpoint of Markov processes. Although Dynkin's approach was

purely formal - i.e. it relied only on the fact that Green's



15

functions and covariance functions were essentially equivalent

objects - a simple physical bridge between the Markov and Gaussian

situations also exists, and one of our suggestions in the proposal

was to study this.

In fact, this was probably the most successful project of the

last year. In a joint work with Ms. Raisa Epstein, who was fully

supported under the grant as a research assistant, we wrote a very

long and, we believe, useful account of the relation between

Gaussian and non-Gaussian random fields and Markov processes. The

link between them is via a central limit theorem for local times

and other additive functionals of Markov processes, and is really

too long to expand on here. Details can be found in Adler and

Epstein (1986).

Work on various aspects of this project is still continuing.

Part of it is related central (and other) limit theorems for

additive functions of Brownian sheets, and some is related to a

new, (and perhaps easier than the usual) treatment of problems

related to the so-called "propagation of chaos" among weakly

interacting systems of particles undergoing some Markov motion.
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6. CONFERENCES ATTENDED AND VISITS

I was fully supported by AFOSR during the months of July and
August 1986. During that time I was at the following institutions,
and spoke with the following mathematicians on a variety of
problems related to the proposal:

July I - July 12 University of Washington; R. Pyke, K.
Alexander

July 13 - July 20 Cornell University; N. U. Prabhu, E. B.
Dynkin, R. Durrett.

July 21 - Aug. 5 University of Massachusetts at Amherst; 3.

Rosen, D. Geman, J. Horowitz, S. Ellis.

Aug. 6 - Aug. 10 Boston University and MIT; M. Taqqu, R. Dudley

Aug. 11 -Aug. 16 Attended conference "StatPhys 15", a trienniel
conference on statistical physics. Boston.

Aug. 17 -Aug. 20 Clarkson University, Potsdam; L. Schulman.

Aug. 21 - Aug. 24 Carleton University, Ottowa; D. Dawson, M.
Csorgo.
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